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In order to understand the role of translational modes in the orientational relaxation in dense dipolar liquids,
we have carried out a computer ‘‘experiment’’ where a random dipolar lattice was generated by quenching
only the translational motion of the molecules of an equilibrated dipolar liquid. The lattice so generated was
orientationally disordered and positionally random. The detailed study of orientational relaxation in this ran-
dom dipolar lattice revealed interesting differences from those of the corresponding dipolar liquid. In particu-
lar, we found that the relaxation of the collective orientational correlation functions at the intermediate wave
numbers was markedly slower at the long times for the random lattice than that of the liquid. This verified the
important role of the translational modes in this regime, as predicted recently by the molecular theories. The
single-particle orientational correlation functions of the random lattice also decayed significantly slowly at long
times, compared to those of the dipolar liquid.@S1063-651X~96!07810-5#

PACS number~s!: 66.10.2x, 05.40.1j, 61.20.Lc

I. INTRODUCTION

The objective of this work is to present the results of a
computer ‘‘experiment’’ on orientational relaxation in a ran-
dom dipolar lattice. This lattice was created by quenching
the translational modes of the dipolar molecules from an
equilibrated liquid configuration. A preliminary report of this
work has been presented elsewhere, where the emphasis was
on dielectric relaxation. Here we report the results of our
molecular-dynamics calculations of the wave-vector-
dependent collective orientational correlation functions~and
also of the single-particle properties! for the random dipolar
lattice. The main motivation of the present work is to under-
stand the role of translational modes in orientational relax-
ation. We present a detailed comparison between the dynam-
ics of a pure dipolar liquid and that of the random dipolar
lattice. The results obtained here seem to confirm the impor-
tant role of the translational modes predicted by the recent
theoretical studies.

Madden and Kivelson@1# addressed the importance of the
role of translation in the dielectric friction. These authors
demonstrated that the translational modes can reduce the
magnitude of dielectric friction significantly. Subsequently,
several workers@2,3# have presented a more general ap-
proach based on an extended molecular hydrodynamic
theory. This latter approach takes into account the effects of
the local intermolecular correlations on the translational mo-
tion properly. This molecular theory also leads to the conclu-
sion that the translational modes can reduce the dielectric
friction drastically. The theory further predicts that while di-
electric relaxation of a dipolar liquid can be strongly non-
Debye in the absence of any translational motion of the di-
polar molecules, it can be almost entirely Debye-like in the
presence of a sizable translational contribution.

The reason for the predicted strong influence of the trans-

lational modes on orientational relaxation can be easily un-
derstood on simple physical grounds. In a dense dipolar liq-
uid, the short-range local orientational correlations are
significant. These correlations can give rise to a caging of the
orientational degree of freedom that slows down the dynam-
ics on molecular length scales. These correlations play an
important role in determining the nature of the frequency
dependence of dielectric friction. In the absence of the trans-
lational contribution, the decay of these local correlations is
very slow in strongly polar dipolar liquids. This may give
rise to a slowly decaying long-time tail in the torque-torque
correlation function@4#, which, in turn, can give rise to a
subdiffusive slow long-time decay of the orientational corre-
lation functions. However, in the presence of a significant
translational contribution~as is normally available in liq-
uids!, the decay of local correlations is much faster, leading
to a much smaller value of the friction at low frequency. As
a result, the decay of orientational correlations is predicted to
be highly nonexponential in the absence of translation but
exponential-like in the presence of the same. These detailed
predictions have been corroborated by other theoretical stud-
ies. In all the theoretical studies, the natural dynamic quan-
tities are the wave-number- (k) and the frequency- (z) de-
pendent orientational correlation functions that are predicted
to show interesting dynamics at the intermediate wave num-
bers~k52p/s, wheres is the molecular diameter!.

Direct experimental verification of the theoretical predic-
tions, however, appear to be more difficult. Grochulski,
Pszczolkowski, and Kempka@5# have studied the dielectric
relaxation of a group of polar, near spherical molecules
~1,1,1-trichloroethane, t-butyl chloride, and 2,2-
dinitropropane!. These molecules form plastic crystalline
phases and hence on going from the liquid to the plastic-
crystal phase it should be possible to observe experimentally
the effect of freezing out translational degrees of freedom on
the shape of the relaxational profile. Grochulski,
Pszczolkowski, and Kempka found that for the whole class
of small, rigid, and polar molecules the influence of
rotational-translational coupling via dielectric friction was
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almost negligible. They concluded that the theory of Bagchi
and Chandra@3# overestimated the effect of translational-
rotational coupling on dielectric relaxation of liquids. Note,
however, that as the systems studied in the experiments un-
dergo a phase transition, the extent of orientational correla-
tions in the new phase may differ considerably from that
present in a dense liquid. In addition, the high symmetry of
the plastic crystalline phase may hinder the formation of ad-
equate local orientation correlation that would be present in a
dense dipolar liquid and is predicted to be the reason for the
strong influence of the translational modes. However, the
experimental studies of Grochulski, Pszczolkowski, and
Kempka raise several interesting questions. For example,
what really controls the extent and the nature of the rota-
tional and translational coupling in a dipolar liquid? Are they
controlled entirely by the static correlations or do the dynam-
ics also play an important role? The answers to these ques-
tions cannot be obtained easily by experiment because the
role of rotational and translational motion change similarly
with the change in the temperature and pressure. In such a
case, the ideal choice would be to think of a simple model in
which the effects of rotational and translational coupling can
be controlled separately. The random dipolar lattice provides
such a model system.

One should also mention here the recent computer simu-
lation studies of orientational relaxation in Brownian dipolar
lattices @6,7#. These studies clearly show the emergence of
the non-Debye behavior as the polarity of the system is in-
creased. Unfortunately, the scope of this study was some-
what limited because the maximum static dielectric constant
of this lattice is only around 18 due to an impending ferro-
electric phase transition. So, if one wants to study the dy-
namics of dense dipolar liquid then one should opt for a
simple system with high dielectric constant~e! where the
above-mentioned effects are really significant. The simple
models that one can think of are the dipolar soft-sphere and
the Stockmayer liquid@8–12#. Therefore, we have performed
detailed molecular-dynamics simulations of the soft-sphere
dipolar liquid @8–11# and the Stockmayer liquid@11,12# and
the corresponding random lattices. The statics and dynamics
of these liquids have already been studied in considerable
detail, which has helped us in checking our results. As al-
ready mentioned, the random lattices have been formed by
quenching the translation motion and allowing only the rota-
tional motion to exist.

There is an additional motivation to carrying out the
present study. This motivation comes from the conjecture
that the spatial density relaxation may be important in con-
trolling the degree of nonexponentiality in supercooled liq-
uids near the glass transition. It is known that molecular
relaxation processes in general, and orientational dynamics
in particular, exhibit marked nonexponentiality in super-
cooled liquids near the glass transition temperature. This
nonexponentiality is so general that one often refers to it as
‘‘universal’’ to all supercooled liquids@13–16#. This nonex-
ponentiality is sometimes explained by assuming that the
liquid is heterogeneous in the time scale of the relaxation
being probed; it is nearly exponential in a given environ-
ment, but the rates vary significantly among the environ-
ments. In an alternate picture, the liquid is imagined to be
homogeneous while each molecule relaxes in an intrinsically

nonexponential manner because of length-dependent inter-
molecular correlations present in a dense liquid. The latter
model lies at the heart of many sophisticated theories such as
mode coupling and other theories of glass transition@17–19#.
Depending on the nature of the system studied, such as a
simple molecular liquid or a networked liquid, one of the two
extreme viewpoints may provide a more appropriate descrip-
tion. In fact, both Angell@16# and Ngai@20,21# have sug-
gested that the degree of nonexponentiality may be corre-
lated with the degree of fragility of the liquid. However,
these concepts and pictures are yet to be incorporated in a
quantitative description of orientational relaxation. Recently,
several experiments@22–24# have been performed that mea-
sured selectively the orientational dynamics of asuben-
sembleof relaxing vectors: the results were strikingly differ-
ent from those which measure only theaverage relaxationof
all the vectors. These experiments, performed not only on the
simple liquids but also on the polymeric ones, reveal that this
few-particlemicroscopic correlation time is 50–200 times
larger than theaveragerelaxation time. This naturally has
led to the conclusion that the nonexponentiality observed in
these liquids is at least partly due to spatially heterogeneous
distribution of correlation times. Thus, while the system is
still ergodic over a long-time scale, probes scattered over the
whole system seem to probe different microenvironments of
the system. Near the glass transition, these different mi-
crostates may have widely different relaxation dynamics,
which in turn can lead to a marked nonexponentiality.

The above experimental results@22–24# also indicate that
the relaxation of these microdomains themselves may be
slaved to the rate of density relaxation, the latter being de-
termined largely by the translational diffusion of the mol-
ecules @22,23#. Thus there may exist a different dynamic
coupling between the translational and the rotational dynam-
ics in the supercooled liquid and this again has two aspects.
First, when the spatial density relaxation becomes slow, the
orientational dynamics also becomes slow, not only because
the viscosity is large but also because the translational mo-
tions may no longer be able to assist in the decay of the local
orientational correlations. Second, these translational mo-
tions themselves can be even slower in these microdomains
~which are often of higher density! leading to even slower
orientational relaxation. The latter effect becomes significant
near the glass transition. Clearly, these two effects are syn-
ergetic, which may explain the observed large~two orders of
magnitude! increase of relaxation times in the slow domains.

The above results again raise the same questions we asked
before, namely, how strong is the coupling of the transla-
tional motion in orientational relaxation? Another question
that arises is the maximum realizable extent of nonexponen-
tiality when the translational modes are totally absent. The
latter may provide a quantitative measure of the nonexpo-
nentiality predicted by the homogeneous mechanism. It is
also relevant in quantifying the heterogeneous picture of
nonexponential relaxation. An earlier, theoretical calculation
@2,3# predicted that the dielectric relaxation can be strongly
non-Debye in the absence of the translational modes. How-
ever, this prediction was contested in an experimental study
@5# of dielectric relaxation on dipolar liquids that raised
doubts and also questions on the influence of the transla-
tional modes. Note that the answers to the questions raised
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above are also important in understanding the effects of dy-
namic disorder on the net translational diffusion coefficient
of a supercooled liquid@25# and also the effects of such
environmental fluctuations on chemical reactions@26#.

The third motivation of the present work comes from re-
cent studies@27,28# on ultrafast solvation dynamics. These
studies have raised several interesting questions regarding
the connection between the orientational relaxation and the
solvation dynamics. An important ingredient of most mo-
lecular theories of solvation dynamics is the wave-vector-
and frequency-dependent collective orientational memory~or
dissipative! function @2#. Theoretical studies suggest that this
memory function may depend strongly on the translational
modes of the liquid, particularly at the intermediate wave
vectors. Such predictions can be easily tested via computer
simulations.

The organization of the rest of the paper is as follows. In
the next section we explain the computational details. Sec-
tion III contains the results of our molecular-dynamics simu-
lations of dipolar liquids, while Sec. IV contains the same for
the random dipolar lattice. Section V contains the results of
the wave-vector- and frequency-dependent orientational cor-
relation functions. Section VI concludes with a brief discus-
sion of the results.

II. COMPUTATIONAL DETAILS

We model the dipolar liquid by two different potential
forms: the dipolar soft-sphere@8# and the Stockmayer@12#
potentials. The dipolar soft-sphere potential is given by

u~12!SS5uSS1uDD~12!, ~1!

where

uSS54eSS~s/r !12 ~2!

is the soft-sphere part anduDD~12! is the dipolar part.

uDD~12!523~m1•r !~m2•r !/r
51m1•m2 /r

3. ~3!

In the above equation,m1 is the dipole moment of the par-
ticle i andr5r22r1. The Stockmayer liquid has the potential
form

u~12!St5uLJ1uDD~12!, ~4!

with

uLJ54eSS@~s/r !122~s/r !6#. ~5!

HereeSS ands are the parameters characterizing the energy
and the diameter of the dipolar soft-sphere, Lennard-Jones
~LJ! and the Stockmayer potentials.

The long-range nature of the dipole-dipole potential given
by Eq. ~3! requires that care must be taken in specifying the
boundary conditions in these systems. It has also been found
@8,12,29# that the boundary condition employed in a com-
puter simulations of a polar liquid can have a large impact

upon the dynamic behavior studied. These boundary condi-
tions are an effort to mimic the true behavior of the infinite
system. Two different approaches are now widely used: The
reaction field method@31–33# and the Ewald summation
method@31,33–36#. The reaction field method truncates the
dipole-dipole interaction at a distance (r c) from each particle
and approximates the medium beyond this separation by di-
electric continuum with a dielectric constant~eRF!. A main
drawback of this method is that it requires an initial guess of
the dielectric constant of the medium. In addition, the energy
in these simulations is not conserved in a microcanonical or
constant-NVE molecular-dynamics simulation@31#. The
Ewald summation method@8,31# considers a macroscopic
spherical sample composed of a large number of periodic
replicas of the basic simulation cell, which is again sur-
rounded by a dielectric continuum characterized byeRF. This
approach is commonly referred to as periodic boundary con-
ditions ~PBCs! @8#. In the present study we consider only the
PBC where the dipole-dipole interactions have been esti-
mated using the Ewald summation technique.

The potential formUDD using Ewald summation can be
given as follows. The potential at a single site is given by the
expression

uDD
PBC,eRF~12!52~m1•“ !~m2•“ !c~r !

1
4p

~2eRF11!L3
m1•m2, ~6!

wherec(r ) is given by@8#

c~r !5
1

L (
n

erfc~aur /L1nu!
ur /L1nu

1
1

pL (
nÞ0

1

n2
expS 2p2n2

a2 1
2p i

L
n•r D , ~7!

wherea is the convergence parameter.L is the cubic simu-
lation box length.n5~l,m,n! is the lattice sum, and erfc is
the complementary error function.

There are three different parameters that must be specified
in the calculation of the Ewald summation techniques and
each will influence the accuracy of the results@8#. These
parameters are the truncation of the real-space and the Fou-
rier space contributions and the value of the convergence
parameter~a!. Thea is usually chosen to be large enough so
that the only term that contributes to the sum in real space is
that with n5~0,0,0! and so the first term in the equation for
uDD
PBC,eRF(12) reduces to the normal minimum image conven-
tion. Next we consider the sum over reciprocal vectorsk.
The values ofk are restricted tok52pn/L @31#. In a simu-
lation, the aim is to choose a value ofa and a sufficient
number ofk vectors so that the above equation with the real
space truncated atn50 gives the same energy for typical
liquid configurations. The values for all the above-mentioned
parameters have been taken from the paper of Kusalik@8#,
who has done an exhaustive study of the soft-sphere dipolar
systems. The values of all the parameters used in simulations
are tabulated in Table I.
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The nondipolar part is handled using the potential trunca-
tion and the minimum image convention. For the soft-sphere
dipolar and Stockmayer liquids the nondipolar part of the
potential~i.e., the soft-sphere and the Lennard-Jones poten-
tials! was truncated at 2.56s.

All the molecular-dynamics simulations reported in this
paper have been performed using 256 particles using con-
ducting boundary conditions~eRF5`! @8,31,37#. The reasons
for choosing the conducting boundary conditions in our
simulations is because the dipolar liquids we consider are
highly dense isotropic liquids and their dielectric constants
have been found to be larger@8#. Therefore, we would expect
the usual Ewald-Kornfeld boundary conditions that corre-
spond toeRF5` to give a good approximation to infinite-
system behavior. The number dependence for the soft-sphere
dipolar liquid have already been studied by Kusalik@8#, who
found that 256 dipolar soft spheres are sufficient to mimic
the most of the macroscopic properties. This applies also for
Stockmayer liquid model reported in this paper. The equa-
tions of motion are solved using leapfrog scheme suggested
by Fincham@31,38,39#. It is convenient to characterize the
dipolar soft-sphere and Stockmayer systems by the reduced
densityr*5rs3, the reduced temperatureT*5kBT/eSS, and
the reduced dipole momentm*5A(m2/eSSs* ), wherer is
the number density,T is the absolute temperature, andk is
the Boltzmann constant. Simulations have been performed
for fixed values of r* and T* , given by r*50.8 and
T*51.35. Three values of dipole moments were considered:
m*52.0, 1.5, and 0.5. The reduced moment of inertia
(I *5I /ms2) was taken to be 0.025 and the reduced times
stepDt*5Dt/Ams2/eSS50.0025. Equilibrations have been
done over 23105 time steps and the averages have been
mostly computed over 2.53105 time steps. Error bars repre-
senting the statistical uncertainty in the dielectric constant
were determined using block average as suggested by Allen
and Tildesley@31# with each block of length 253103 time
steps each.

For each of the systems studied and at each polarity, we
generated a quenched state, in which the translational motion
of each molecule is removed and only the rotational motions
are allowed. These quenched states have been prepared using
the following procedure. Initial configurations for these
simulations have been taken from well-equilibrated liquid
simulation runs. These configurations are then quenched and
equilibrated, for 1.23105 time steps, and production runs
were continued for another 1.53105 time steps. Such a state
will be positionally and orientationally disordered and hence
we call it a random lattice. Three different random lattices
have been formed for each system and for each polarity stud-
ied. The results obtained from each of the three different
random lattices were nearly the same. The results given in
this article correspond to one such random lattice.

III. COMPUTATIONAL RESULTS ON LIQUID

A. Static properties

In Fig. 1, we plot the radial distribution function for both
the soft-sphere dipolar liquid and the Stockmayer liquid, at
m*52.0. As expected for the liquid phase, theg(r ) tends to
1 asr→`. These calculations are reported to show that our
simulation results agree closely with those of Kusalik@8#. As
one can see, theg(r ) for dipolar soft-sphere and Stockmayer
fluids differ at least in two ways. Not only is theg(r ) more
structured for the dipolar soft-sphere liquid but the whole
function is also shifted by a constant factor to large separa-

FIG. 1. Comparison of the radial distribution for the dipolar
soft-sphere liquid~markers with a solid line! and the Stockmayer
liquid ~solid line! atm*52.0,r*50.8, andT*51.35. Note thatr is
expressed in reduced units.

FIG. 2. Mean-square displacement as a function of the reduced
time for the soft-sphere dipolar liquid~SSL! and the Stockmayer
liquid ~STM! for m*52.0, r*50.8, andT*51.35.

TABLE I. Parameters employed in evaluating the Ewald sum-
mation for the dipolar soft-sphere liquid simulations. The values
have been obtained from Ref.@8#.

N R nmax
2 a

256 2.56s 38 5.75
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tions. This can be understood because the dipolar soft-sphere
liquid without the attractive part of the Lennard-Jones have a
large ‘‘effective radius’’ that makes theg(r ) shift by a con-
stant factor.

In order to confirm the liquid phase, we calculated the
mean-square displacement^ur i(t)2r i~0!u&, wherer i(t) is the
position vector of moleculei at time t. For fluids the mean-
square displacement~MSD! continually increases with time
varying linearly at long times according to the Einstein rela-
tionship @31#

^ur i~ t!2r i~0!u2&56Dt, ~8!

whereD is the translational diffusion coefficient. Figure 2
shows the respective MSD for the soft-sphere dipolar liquid
and the Stockmayer liquid atm*52. As expected, the MSD
plots for the two models~soft-sphere dipolar and Stock-
mayer! in their liquid phase shows a linear dependence with
time. The Stockmayer liquid shows slightly faster diffusion.
This can be interpreted in terms of Fig. 1. Since the soft-
sphere liquid is more structured at molecular length scales, a
tagged particle experiences more frictional force in this liq-
uid. The latter follows from the recent mode-coupling ex-
pression of the friction in terms of the density modes@40#.

The static dielectric constante is a fundamental property
of polar liquids@41# and thus remains a major focus of re-
search interest. Unfortunately, the determination of this
quantity by computer simulation is known to give both con-
ceptual@12,29,30# and computational difficulties@8#. In or-
der to obtain reliable estimates of thee the simulations
should be long enough to yield̂M &2/^M2&'0. In practice,
for a strongly interacting polar liquids, such as the ones con-
sidered in this work, the ratio may not be exactly zero. But,
in our simulations we get a ratiôM &2/^M2&'0.1 @9#. Di-
electric constants~e! reported in this work were obtained
from the mean-square fluctuations^M2& of the total dipole
moment of the system@31#. In general the relative permittiv-
ity e of the system is not the same as that of the surrounding
mediumeRF. The expression for calculatinge from the simu-
lation can be written as@31#

1

e21
5

1

3yg~eRF!
2

1

~2eRF11!
. ~9!

whereg~eRF! is related to the fluctuations in the total dipole
moment of the simulation box

g5g~eRF!5

K U(
i51

N

m iU2L 2K U(
i51

N

m iU L 2

Nm2 . ~10!

The calculated value ofg factor depends uponeRF
through the simulation Hamiltonian. WheneRF5`, the above
equation reduces to the Clausius-Mosotti result@31#

e5113yg~`!. ~11!

wherey54prm2/9kBT.

Molecular-dynamics results for the average dipole-dipole
energy^UDD&/NeSS, total configurational energŷU&/NeSS,
total moment squared̂M2&, and the static dielectric constant
for the two systems, the soft-sphere dipolar liquid and the
Stockmayer liquid, have been presented in Table II. In fact,
such a comparative study had been presented earlier by Ku-
salik @11#. His results were similar to the ones reported here
except for a dipole moment ofm*51.65. The value of the
dielectric constants of the random lattices were found to be
slightly smaller than that of the corresponding liquids. For
example, the dielectric constant~e! of the dipolar soft-sphere
liquid for m*52.0 was 8862 for the liquid and 8863 for the
corresponding random lattice.

The possible existence of orientationally ordered phases
was monitored for both liquids and random lattices~for both
soft-sphere dipolar and Stockmayer! by calculating the equi-
librium first- and second-rank orientational order parameters
^P1& and ^P2&, respectively. The instantaneous second-rank
order parameterP2 was taken to be the largest eigenvalue of
the ordering matrixQ with elements by@9,10#

Qab5
1

N (
i51

N
1
2 ~3ma

i mb
i 2dab!, ~12!

whereN is the number of particles in the simulation box and
m a
i is the a component of the unit vectorm̂ i . The corre-

sponding eigenvector is the instantaneous directord̂. The
instantaneous first-rank order parameterP1 is defined by
@9,10#

P15
1

N U(
i51

N

m̂i•d̂U. ~13!

The equilibrium order parameters are the ensemble aver-
ages ofP1 and P2. The equilibrium order parameters for
both the models in both the phases~liquid and random lat-
tice! have been computed and found to be close to zero,
suggesting the inexistence of macroscopic order in the liquid
and the random dipolar lattice~RDL!.

B. Dynamic properties of dipolar liquids

The normalized autocorrelation function [CA(t)] of a mi-
croscopic quantityAi(t) associated with thei th molecule is
computed in the molecular-dynamics simulations using the
expression

TABLE II. Results for dipolar soft sphere fluids atr*50.8 and
T*51.35. Note that theUDD/NeSS is the reduced dipole-dipole
energy per particle andU/NeSS is the reduced total energy per
particle. The values fore given in parentheses are estimates of the
uncertainties.

m* UDD/NeSS ^U&/NeSS e

1.5 22.783 2.397 19.35~63.0!
2.0 26.061 20.69 88.0~62.0!
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CA~ t !5 lim
T→`

1

T E
0

T

ds A~s!A~ t1s!Y lim
T→`

1

T E
0

T

ds A~s!A~s!. ~14!

In this expression the dynamic quantity can be force, torque,
position, or angular velocity of the particles present in the
system. Correspondingly, we get the respective time autocor-
relation functions@31#. In Fig. 3 the torque autocorrelation
function [CT(t)] and its power spectrum have been shown
for dipolar-soft spheres atm*52. The Fourier transforms
consist of a well-developed, although not a very broad, peak
with a short high-frequency tail.

Of particular importance for the interpretation of light-
scattering experiments and dielectric relaxation experiments
are the orientational time correlations@42#. In Fig. 4 we
present the semilogarithmic plot of normalized time correla-
tion functions for the collective moment [CM(t)] for both
the dipolar soft-sphere and the Stockmayer liquid models at
m*51.5.

CM~ t !5^M ~ t !•M ~0!&/^M2&, ~15!

whereM (t)5( i
Nmi~t!. Figure 5 shows the time dependence

of the single-dipole autocorrelation functionC1(t) for both
systems~soft-sphere liquid and Stockmayer!,

C1~ t !5^m~ t !•m~0!&/m2. ~16!

It can be seen from Figs. 4 and 5 that the relaxation time
for the dipolar soft-sphere systems is slightly shorter than
that for the Stockmayer fluid@11#. This is opposite the be-
havior observed for the translational diffusion. This may be
due to the attractive part of the Lennard-Jones potential,
which makes the particles to come closer in the Stockmayer
liquid ~as evident from Fig. 1!. When the particles are closer
the dipole-dipole interactions are larger, which gives rise to
greater friction and this makes the decay slower. This is, of

course, a tentative explanation: a detailed theoretical study is
required to fully understand the differences between the two
liquids.

In Fig. 6 we compare the decay of the single-particle ori-
entational correlation function with that of the total moment
correlation function for the highestm* considered in this
study. The decay ofC1(t) is faster than that of theCM(t).
The usual interpretation for this behavior is the following.
Since the total-moment time correlation function is a collec-
tive quantity, it is affected by the long-wavelength orienta-
tional correlations present in a strongly correlated system.
These correlations are responsible for the decay being much
slower for the collective moment than for the single-particle
case. Note that a similar observation has already been made
earlier by others@8,11#, although a detailed comparison of
the simulation results with the detailed microscopic theories
is yet to be done.

The relaxation of the single-particle orientational correla-
tion functionC1(t) is really interesting. After a short-time
inertial decay, the decay is nearly exponential at the interme-
diate times. The relaxation again becomes nonexponential. A
distinct bend appears att'0.3. Again, this kind of shoulder
has already been reported in the earlier simulations of dipolar
fluids @8#. Again, a detailed theoretical explanation of such
behavior is missing. Unlike the single-particle correlation
function, the total-moment time correlation function rapidly
becomes exponential after an initial nonexponential Gauss-
ian decay@8#. We have shown in a separate study on orien-
tational relaxation in a simple cubic dipolar lattice that the
memory function for the single-particle correlation function
is much larger than that for the collective moment correlation
function. This can explain the nearly exponential decay of
the collective moment. The slower decay of the collective
moment is due to the long-wavelength static correlations that

FIG. 3. Decay of the normalized torque autocorrelation function
with reduced time for the dipolar soft-sphere liquid. The inset
shows the power spectra of the corresponding time correlation func-
tion.

FIG. 4. Comparison of the total-dipole-moment time correlation
for SSL ~solid line! and STM~dashed line! at r*50.8, T*51.35,
andm*51.5.
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affect the total moment but not the single-particle correlation
function.

For quantitative purposes, it is useful to define the follow-
ing average collective correlation times associated with
C1(t) andCM(t):

ts5E
0

`

C1~ t !dt ~17!

and

t5E
0

`

CM~ t !dt. ~18!

The values ofC1(t) were calculated for sufficiently long
times with more than adequate precision to allow the
straightforward numerical integration of Eq.~17!. However,
in the evaluation of Eq.~18! @as well as in the evaluation of

the frequency dependent dielectric constante~v!# it was nec-
essary to extrapolate the simulatedCM(t) to obtain the long-
time behavior. This was done by assuming that fort.0.3,
CM(t) is given by the simple exponential form

CM~ t !5Ae2t/tslope, ~19!

wheretslope is the asymptotic slope obtained from the semi-
logarithmic plots of Fig. 4, where ln[CM(t)] is plotted
against time. The same procedure was also used by Kusalik
@8#. The study of Stockmayer liquids has a long history and
the trends for the Stockmayer liquid show similar nature and
are not shown here.

The increasing importance of collective effects asm* is
increased at a given density and temperature is demonstrated
in Figs. 7–9 by comparing the autocorrelation of the total

FIG. 5. Normalized single-dipole orientational time correlation
function for SSL and STM atr*50.8,T*51.35, andm*51.5.

FIG. 6. Comparison of the total-dipole time correlation function
with the single-dipole time-correlation function for the dipolar soft-
sphere liquid atr*50.8,T*51.35, andm*52.0.

FIG. 7. Comparison of the single-dipole~X51! and total-dipole
(X5M ) orientational time correlation functions for the dipolar soft-
sphere liquid atr*50.8,T*51.35, andm*50.5.

FIG. 8. Comparison of the single-dipole~X51! and total-dipole
(X5M ) orientational time correlation functions for the dipolar soft-
sphere liquid atr*50.8,T*51.35, andm*51.5.
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moment CM(t), with the single-particle dipole reorienta-
tional correlation functionC1(t). At m*50.5, the dipolar
interaction energy is weak compared to the rotational kinetic
energy. The similarity of the single dipole and the total-
moment correlation function indicates only weak cooperative
effects. At higher values ofm* , the two correlation functions
have, as before, the same quadratic short-time decay, corre-
sponding to the free rotors, but at larger times collective
effects dominate the decay of the total polarization and lead
to a nearly exponential decay@8,11#. A similar study for
Stockmayer liquid already exists and the same kind of trend
has been reported@43#.

IV. ORIENTATIONAL DYNAMICS
OF RANDOM DIPOLAR LATTICES

Having studied the liquid-state properties in detail, we
now concentrate on the dynamic properties of the random
dipolar lattice. The random dipolar lattice was, as mentioned
before, formed from a fully equilibrated dipolar liquid by
totally quenching the translational motion of every dipolar
molecule. The study of the orientational order parameters
and the radial distribution function indicates that the random
dipolar lattice so formed were orientationally random and
positionally disordered. Below we discuss the results ob-
tained for various time correlation functions calculated for
the random lattice. A few of the results mentioned here were
reported previously@44#.

In Fig. 10 the torque-torque correlation function [CT(t)]
of the liquid and random lattice for the dipolar soft-sphere
liquid are plotted. The plot shows that the decay nature of the
correlation functions is almost similar. The same kind of
observation has been observed for the angular velocity also
and it is not shown here.

As mentioned in Sec. III, the long-time part of the collec-
tive moment correlation function for a soft-sphere dipolar
liquid could be fitted to an exponential@see Eq.~19!#. How-
ever, the same for the corresponding RDL could be fitted

only to a stretched exponentialCM(t).exp2~t/t!b, with
b.0.9.

In Fig. 11 the relaxation of the single-particle correlation
function C1(t) for both the liquid and the random lattice
systems is shown for a system of dipolar soft spheres at the
high polarity~m*52.0!. Note that the nearly identical decay
at the short time,but the widely different time scales of re-
laxation at the long times. For the liquid the long time of the
single-particle correlation function is found to have a
stretched exponential nature withC1(t).e2(kt)b, with
b.0.9. In the corresponding RDL, the slow decay is subdif-
fusive, withC1(t).(t)2a, with a.0.75. In the inset of Fig.
11 we show the decay of the same correlation function at the

FIG. 9. Comparison of the single-dipole~X51! and total-dipole
(X5M ) orientational time correlation functions for the dipolar soft-
sphere liquid atr*50.8,T*51.35, andm*52.0.

FIG. 10. Comparison of the torque-torque autocorrelation func-
tions CT(t) for the dipolar soft-sphere liquid~solid line! and the
corresponding random lattice~dotted line! at r*50.8, T*51.35,
andm*52.0.

FIG. 11. Single-particle orientational correlation functionC1(t)
plotted against reduced time on a semilogarithmic plot for liquid
and the random lattice, form*52.0, r*50.8, andT*51.35. The
dashed lines represent the liquid state and the solid lines are for the
random lattice. The inset shows a graph of the same function
against time for the smaller dipole-moment~m*50.5! system stud-
ied, as discussed in the text.
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lower polaritym*50.5. Here the decay is nearly identical for
the both the liquid and the random lattice over the whole
dynamic range for this weakly polar system. Note thatC1(t)
andCM(t) behave rather differently in the random lattice.
The same trend is observed in the Stockmayer system also.

The frequency-dependent dielectric constant
e~v!5e9~v!2i e8~v! was determined using the general ex-
pression@8#

Liv@2ĊM~ t !#512 ivLiv@CM~ t !#5
e~v!21

e21

2eRF1e

2eRF1e~v!
,

~20!

in whichLiv@ # denotes the usual Fourier-Laplace transform.
In Figs. 12 and 13 we show the real and imaginary compo-
nents of the frequency-dependent dielectric constant for the

soft-sphere dipolar liquid and the corresponding random lat-
tice, respectively, atm*52.0. In Fig. 14 we show the Cole-
Cole plot of the dielectric relaxation of the soft-sphere dipo-
lar liquid and the corresponding random lattice for the highly
polar system. Note the markedly non-Debye behavior of the
random lattice, in contrast to the nearly Debye behavior of
the liquid. Note also the increased role of inertia at high
frequency for the random lattice. In Fig. 15 we show the
second-rank orientational correlation functionC2(t). Here
again the decay in the corresponding random lattice is mark-
edly slower than that in the liquid. As already mentioned, no
signature of macroscopic orientational ordering has been ob-
served either in the liquid or in the random lattice systems.
Essentially the same results have been obtained for the
Stockmayer liquid.

How should the dramatic slowing down of relaxation in
the random dipolar lattice be interpreted? It is well known

FIG. 12. Real component of the frequency-dependent dielectric
constant for the dipolar soft-sphere liquid and the corresponding
random lattice atr*50.8,T*51.35, andm*52.0.

FIG. 13. Imaginary component of the frequency-dependent di-
electric constant for the dipolar soft-sphere liquid and the corre-
sponding random lattice atr*50.8,T*51.35, andm*52.0.

FIG. 14. Cole-Cole plot for the liquid and the corresponding
random lattice atm*52.0. Here the imaginary part@e9~v!# has been
plotted against the real part@e8~v!#. e is the static dielectric con-
stant.

FIG. 15. Second-rank single-particle orientational correlation
functionC2(t) plotted against the reduced time on a semilogarith-
mic plot. The dashed lines represent the liquid state and the solid
lines are for the random lattice. The inset shows the dependence of
the same function against reduced time for a smaller dipole moment
~m*50.5!.
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that the translational modes are most effective in accelerating
the decay of intermolecular correlations at the intermediate
to large wave vectors, that is, at short times@2,3,45#. The
nearly identical decay observed for the liquid and the random
lattice at low polarity indicates that here the translational
modes are not important and this is because the local orien-
tational order is small at low polarity. The anomaly observed
at higher polarity must then be attributed to the much higher
degree of local orientational correlations present in the latter.
When the translational modes are totally absent, then these
local correlations cause the orientational relaxation to pro-
ceed at a much slower rate. This is similar to the situation

common in atomic liquids where this slowing down of den-
sity relaxation at molecular length scales is known as de
Gennes’s narrowing@45#. We quantify these concepts below.

For dipolar liquids, the single-particle frictionz(z) is usu-
ally separated into a short-range part, denoted byz0, and a
long-range dipolar part~termed the dielectric friction!
zDF(z). The bare frictionz0 may include the friction from all
the angle-dependent but nondipolar interactions. In the
present case,z050; therefore, the whole effect comes from
zDF only. The calculation of the dielectric friction evidently
requires the calculation of the torque-torque correlation func-
tion. From molecular hydrodynamic theory one can obtain a
microscopic expression for the torque acting on a particle at

FIG. 16. Normalized longitudinal part of the total moment-
moment time correlation function for the dipolar soft-sphere liquid
~solid line! and the corresponding random lattice~dashed line! at
r*50.8,T*51.35,m*50.5, andK*50.919.

FIG. 17. Normalized longitudinal part of the total moment-
moment time correlation function for the dipolar soft-sphere liquid
~solid line! and the corresponding random lattice~dashed line! at
r*50.8,T*51.35,m*50.5, andK*56.43.

FIG. 18. Normalized longitudinal part of the total moment-
moment time correlation function for dipolar soft-sphere liquid
~solid line! and the corresponding random lattice~dashed line! at
r*50.8,T*51.35,m*52.0, andK*56.43.

FIG. 19. Normalized transverse part of the total moment-
moment time correlation function for the dipolar soft sphere liquid
~solid line! and the corresponding random lattice~dashed line! at
r*50.8,T*51.35,m*50.5, andK*50.919.
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position (r ) and orientation~V! at time (t) @40#

N~r ,V,t !52rs~r ,V,t !¹RE dr 8dV8cs0~r ,r 8,V,V8!

3dr0~r 8,V8,t !, ~21!

where rs~r ,V,t! is the position-, orientation-, and time-
dependent number density of the tagged particle and¹R is
the angular momenta operator.dr0~r ,V,t!5r0~r ,V,t!2r0/4p
is the fluctuation in the position- and orientation-dependent
number densityr0~r ,V,t! of the solvent molecules andr0 is
the corresponding average number density, while
cs0~r ,r 8,V,V8! represents the two-particle direct correlation
function of the tagged particle and a solvent molecule@40#.

From this torque we can calculate the friction by using the
well-known Kirkwood formula@46#. But this leads to a com-
plex four-dimensional integration over the torque-torque au-
tocorrelation function. Traditionally, it has been assumed
that the tagged particle is immobile. This leads, after some
tedious algebra, to the expression for the dielectric friction

bzDF~z!5
r0

2~2p!4
E
0

`

dk k2

3Fcs02 ~110;k!@11~r0/4p!h~110;k!#

z1S10~k,z!

12
cs0
2 ~111;k!@12~r0/4p!h~111;k!#

z1S11~k,z!
G ,

~22!

wherec( l lm:k) andh( l lm:k) are the (l lm) components of
the two particle direct correlation function and the pair cor-
relation function of the liquid in the intermolecular frame
with k parallel to thez axis @2#. cs0(110;k) is the (l lm)
component of the direct correlation function between the sol-

ute dipole and the solvent molecules andSlm~k,z! is the gen-
eralized rate of density relaxation and is given by@47#

S lm~k,z!5
l ~ l11!kBT f~ l lm;k!

IGR~k,z!
1
k2kBT f~ l lm;k!

MGT~k,z!
,

~23!

whereM and I are the mass and the average moment of
inertia of a solvent molecule.GR~k,z! and GT~k,z! are the
memory function for the single particle and the collective
angular momentum relaxation, respectively.f ~l lm;k! is re-
lated to the orientational pair correlation function andkBT is
the Boltzmann constant times the absolute temperature.

FIG. 20. Normalized transverse part of the total moment-
moment time correlation function for the dipolar soft-sphere liquid
~solid line! and the corresponding random lattice~dashed line! at
r*50.8,T*51.35,m*50.5, andK*56.43.

FIG. 21. Normalized transverse part of the total moment-
moment time correlation function for the dipolar soft-sphere liquid
~solid line! and the corresponding random lattice~dashed line! at
r*50.8,T*51.35,m*52.0, andK*50.919.

FIG. 22. Normalized transverse part of the total moment-
moment time correlation function for the dipolar soft-sphere liquid
~solid line! and the corresponding random lattice~dashed line! at
r*50.8,T*51.35,m*52.0, andK*56.43.
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In deriving the above expression, one assumes that the
intermolecular correlations are given by a linear theory~such
as mean spherical approximation or linearized hypernetted
chain! @48,49#, so that the only nonvanishing components of
the direct correlation function arec(000;k), c(110;k), and
c(111;k). A microscopic expression for the dielectric fric-
tion was derived earlier@50# using a Markovian approxima-
tion for the dissipative kernels of the solvent. Here the gen-
eralization of this treatment to non-Markovian regime of
solvent relaxation has been used.

Equation~23! has an interesting structure. It shows that
the dielectric friction is sensitive to the local orientational
correlations. Moreover, both the longitudinal and the trans-
verse modes contribute to the dielectric friction. Note that by
the transverse mode, we mean here the~111! component in
the coordinate frame whenk is along thez axis: these arenot
the transverse electromagnetic modes. As already mentioned
for a RDL, the friction entirely comes from the dielectric part
asz0 is identically zero. The structure of Eq.~23! helps us in
understanding the strong effect of local intermolecular orien-
tational correlations in the absence of translations. When
translation is absent,Slm~k,z! is small at intermediate wave
vectors, wheref 110~k! shows a softening. Thus the contribu-
tion of the intermediate wave vectors becomes very large for
the random lattice. This, in turn, leads to the subdiffusive
slow decay. The quantitative calculations are yet to be car-
ried out.

What is the reason for the increased dispersion at the
high-frequency limit observed in the random lattice? This is
because of the same translational modes that reduce the low-
frequency friction lead to an increased value of the friction at
the high-frequency end. Thus the magnitude of friction de-
creases at the short times when the translational modes are
removed, as in the random lattice case. This part deserves
further study.

V. WAVE-VECTOR- AND FREQUENCY-DEPENDENT
DIELECTRIC RESPONSE OF THE RANDOM DIPOLAR

LATTICE

An important ingredient of several molecular theories of
solvation dynamics is the wave-vector- and frequency-
dependent collective orientational correlation functions. In
fact, a few studies of the frequency-dependent dielectric re-
sponse have already been reported@2,51–53#.

The wave-vector-dependent permittivity of a particular
system may be related to susceptibilityx~k,v! that deter-
mines the polarization due to the external fieldE~k,v!.

P~k,v!5e0x~k,v!E~k,v!. ~24!

wheree0 is the vacuum permittivity. For an infinite system of
cubic or spherical symmetry it is readily shown that@51–54#

xL~k,v!5
eL~k,v!2e~`!

eL~k,v!e~`!
~25!

and

xT~k,v!/25eT~k,v!2e~`!, ~26!

wherex and the dielectric permittivity tensore~k,v! have
been decomposed into longitudinal~L, parallel to k! and

transverse~T, perpendicular tok! components. Thee~`! is
the dielectric constant at the optical frequency@e~`!51 for a
system of rigid nonpolarizable molecules#.

The susceptibilityx~k,v! can easily be expressed in terms
of molecular correlation functions. The main interest in this
work is to calculate these molecular correlation functions
and check the predictions of the molecular theories. For rigid
and nonpolarizable molecules with dipole moments of mag-
nitude m, linear response theory gives the expression for
x~k,v! @51–54#,

x~k,v!5
r

kBTNe0
S ^uM ~k!u2&1 ivE

0

`

dt exp~ ivt !

3^M ~k,t !•M ~2k,0!& D , ~27!

wherer is the number density andN is the number of di-
poles in the system. The quantityM ~k,t! is the spatial Fou-
rier transform of the dipole density

M ~k,t !5(
j

m j~ t !exp@ ik•r j~ t !#,

wheremj is the dipole moment of thej th molecule andr j is
the position of its center of mass with respect to the labora-
tory frame. Due to the periodic boundary conditions used in
our simulations, the allowed wave vectors are of the form
k5( l ,m,n)2p/L, whereL is the length of the cubic simula-
tion box andl ,m,n are integers.

On decomposingM ~k,t! into longitudinal and transverse
components, one gets

M ~k,t !5ML~k,t !1MT~k,t !

5M ~k,t !• k̂k̂1M ~k,t !•~12 k̂k̂!.

The orientational correlation functions one is interested are

CML~k,t !5^ML~k,t !•ML~2k,0!& ~28!

and

CMT~k,t !5^MT~k,t !•MT~2k,0!&. ~29!

An interesting prediction of the molecular theory is that at
intermediate wave vectors~k52p/s, with s the molecular
diameter!, the orientation relaxation depends strongly on the
translational diffusion of the solvent molecules. In fact, the
theory makes even a stronger prediction that in the absence
of the translational modes the orientation modes will be sig-
nificantly slower and more nonexponential than in the pres-
ence of these modes. This is due to the strong local orienta-
tional correlations present in a strongly polar dipolar liquid
that tend to ‘‘cage’’ the orientational motion. In fact, the
simulations presented in Sec. IV are in complete agreement
with these predictions. What now remains to be demon-
strated is the strong dependence of orientational relaxation at
intermediatek vectors on translation. This is done below.

In Figs. 16 and 17 the time dependence of the normalized
CML~k,t! is shown for a dipolar soft-sphere liquid and the
corresponding random lattice atm*50.5 at the wave vectors
ks50.919 and 6.43, respectively. These figures clearly show
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that the translational modes, while not important at low wave
vectors, dominate the long-time orientational relaxation at
the intermediate wave vectors. This behavior is in complete
agreement with molecular hydrodynamic theory. In Fig. 18
the time dependence of the normalizedCML~k,t! at ks56.43
is shown form*52.0. At this high polarity the orientational
correlations between neighboring molecules are significant.
The molecular hydrodynamic theory therefore predicts that
the translational modes can be extremely important in this
regime. Figure 18 clearly verifies this prediction. In Figs. 19
and 20 we show the time dependence of the transverse com-
ponentCMT~k,t! for two wave vectorsks50.919 and 6.43
for m*50.5. One again sees the importance of translational
modes in the intermediate wave vectors. The dependence of
CMT~k,t! on the translational modes at intermediate wave
vectors increases atm*52.0. This behavior is similar to the
one shown in the previous figures and is shown in Figs. 21
and 22.

The same kind of behavior has been observed for Stock-
mayer liquids. This amply verifies that the important role of
translational modes at the intermediate wave vectors is inde-
pendent of the detailed short-range interaction.

VI. CONCLUSION

Several different results have been reported in this work.
They clearly demonstrate the coupling between rotation and
the translation and their significant role in the orientational
relaxation in the supercooled liquid. However, these results
are for model systems and one should be cautious about their
relative importance in real systems. The decay nature of the
orientational relaxation of the single particle and the collec-
tive moment in these systems show a rather different behav-
ior. The collective moment relaxation of the system becomes
much slower as one goes to the higher polar systems. This
clearly confirms the importance of collective effects in such

systems. The importance of translational and rotational cou-
pling can be understood by the following argument. In the
microdomains where the translational diffusion is slow, the
orientational relaxation of a dipolar molecule can be even
slower. In the experiments where a subensemble of particles
is selectively studied, it is the slow relaxation that is domi-
nant. The dramatic slowing down of the orientational relax-
ation in the random lattice can be understood in two ways.
First, the slow orientational relaxation of the random lattice
can be easily explainable because of the many relaxation
channels that are available for the liquid and not for the
random lattice. Second, the heterogenous mechanism ex-
plained in the Introduction can be used to understand the
dramatic slowing down of the orientational relaxation. Since
there is no macroscopic order observed in the systems stud-
ied it may be concluded that the orientational slowing down
can be partly due to the local ordering developed in the sys-
tem. The results of the orientational correlation functions of
the random lattice seem to show a subdiffusive behavior at
long times. The strong dependence of orientational relax-
ation at intermediate wave vectors on translational diffusion
is also confirmed by the simulation studies. Moreover, the
results obtained here appear to be in good agreement with
the computer simulation results of Skaf, Fonseca, and Lada-
nyi @54# for orientational relaxation in methanol. One par-
ticularly nice result obtained by them was the greater sensi-
tivity of the relaxation of the transverse part of the collective
moment to the translation than the longitudinal part. The
same result has been obtained here.
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