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Orientational relaxation in a random dipolar lattice: Wave-number and frequency dependence
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In order to understand the role of translational modes in the orientational relaxation in dense dipolar liquids,
we have carried out a computer “experiment” where a random dipolar lattice was generated by quenching
only the translational motion of the molecules of an equilibrated dipolar liquid. The lattice so generated was
orientationally disordered and positionally random. The detailed study of orientational relaxation in this ran-
dom dipolar lattice revealed interesting differences from those of the corresponding dipolar liquid. In particu-
lar, we found that the relaxation of the collective orientational correlation functions at the intermediate wave
numbers was markedly slower at the long times for the random lattice than that of the liquid. This verified the
important role of the translational modes in this regime, as predicted recently by the molecular theories. The
single-particle orientational correlation functions of the random lattice also decayed significantly slowly at long
times, compared to those of the dipolar liqui81063-651X96)07810-3

PACS numbeps): 66.10—-x, 05.40+j, 61.20.Lc

[. INTRODUCTION lational modes on orientational relaxation can be easily un-
derstood on simple physical grounds. In a dense dipolar lig-
The objective of this work is to present the results of auid, the short-range local orientational correlations are
computer “experiment” on orientational relaxation in a ran- significant. These correlations can give rise to a caging of the
dom dipolar lattice. This lattice was created by quenchingorientational degree of freedom that slows down the dynam-
the translational modes of the dipolar molecules from arics on molecular length scales. These correlations play an
equilibrated liquid configuration. A preliminary report of this important role in determining the nature of the frequency
work has been presented elsewhere, where the emphasis wdspendence of dielectric friction. In the absence of the trans-
on dielectric relaxation. Here we report the results of ourational contribution, the decay of these local correlations is
molecular-dynamics calculations of the wave-vector-very slow in strongly polar dipolar liquids. This may give
dependent collective orientational correlation functigasd  rise to a slowly decaying long-time tail in the torque-torque
also of the single-particle propertjefor the random dipolar correlation function[4], which, in turn, can give rise to a
lattice. The main motivation of the present work is to under-subdiffusive slow long-time decay of the orientational corre-
stand the role of translational modes in orientational relax{ation functions. However, in the presence of a significant
ation. We present a detailed comparison between the dynantranslational contribution(as is normally available in lig-
ics of a pure dipolar liquid and that of the random dipolaruids), the decay of local correlations is much faster, leading
lattice. The results obtained here seem to confirm the importo a much smaller value of the friction at low frequency. As
tant role of the translational modes predicted by the recera result, the decay of orientational correlations is predicted to
theoretical studies. be highly nonexponential in the absence of translation but
Madden and Kivelsofil] addressed the importance of the exponential-like in the presence of the same. These detailed
role of translation in the dielectric friction. These authorspredictions have been corroborated by other theoretical stud-
demonstrated that the translational modes can reduce tlies. In all the theoretical studies, the natural dynamic quan-
magnitude of dielectric friction significantly. Subsequently, tities are the wave-numberk) and the frequency-zj de-
several workerd?2,3] have presented a more general ap-pendent orientational correlation functions that are predicted
proach based on an extended molecular hydrodynamito show interesting dynamics at the intermediate wave num-
theory. This latter approach takes into account the effects ders(k=2n/c, whereo is the molecular diametgr
the local intermolecular correlations on the translational mo- Direct experimental verification of the theoretical predic-
tion properly. This molecular theory also leads to the conclutions, however, appear to be more difficult. Grochulski,
sion that the translational modes can reduce the dielectribszczolkowski, and Kempkd] have studied the dielectric
friction drastically. The theory further predicts that while di- relaxation of a group of polar, near spherical molecules
electric relaxation of a dipolar liquid can be strongly non-(1,1,1-trichloroethane, t-butyl chloride, and 2,2-
Debye in the absence of any translational motion of the didinitropropang These molecules form plastic crystalline
polar molecules, it can be almost entirely Debye-like in thephases and hence on going from the liquid to the plastic-
presence of a sizable translational contribution. crystal phase it should be possible to observe experimentally
The reason for the predicted strong influence of the transthe effect of freezing out translational degrees of freedom on
the shape of the relaxational profile. Grochulski,
Pszczolkowski, and Kempka found that for the whole class
*Also at the Jawaharlal Nehru Centre for Advanced Scientificof small, rigid, and polar molecules the influence of
Research, Bangalore, India. rotational-translational coupling via dielectric friction was
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almost negligible. They concluded that the theory of Bagchinonexponential manner because of length-dependent inter-
and Chandrd3] overestimated the effect of translational- molecular correlations present in a dense liquid. The latter
rotational coupling on dielectric relaxation of liquids. Note, model lies at the heart of many sophisticated theories such as
however, that as the systems studied in the experiments umode coupling and other theories of glass transitioh-19.
dergo a phase transition, the extent of orientational correlabepending on the nature of the system studied, such as a
tions in the new phase may differ considerably from thatsimple molecular liquid or a networked liquid, one of the two
present in a dense liquid. In addition, the high symmetry ofextreme viewpoints may provide a more appropriate descrip-
the plastic crystalline phase may hinder the formation of adtion. In fact, both Angell[16] and Ngai[20,21] have sug-
equate local orientation correlation that would be present in gested that the degree of nonexponentiality may be corre-
dense dipolar liquid and is predicted to be the reason for thiated with the degree of fragility of the liquid. However,
strong influence of the translational modes. However, théhese concepts and pictures are yet to be incorporated in a
experimental studies of Grochulski, Pszczolkowski, andjuantitative description of orientational relaxation. Recently,
Kempka raise several interesting questions. For exampleeveral experimen{®22-24 have been performed that mea-
what really controls the extent and the nature of the rotasured selectively the orientational dynamics ofsaben-
tional and translational coupling in a dipolar liquid? Are they sembleof relaxing vectors: the results were strikingly differ-
controlled entirely by the static correlations or do the dynam-ent from those which measure only theerage relaxatiorof
ics also play an important role? The answers to these quesil the vectors. These experiments, performed not only on the
tions cannot be obtained easily by experiment because tremple liquids but also on the polymeric ones, reveal that this
role of rotational and translational motion change similarlyfew-particle microscopic correlation time is 50-200 times
with the change in the temperature and pressure. In suchlarger than theaveragerelaxation time. This naturally has
case, the ideal choice would be to think of a simple model ined to the conclusion that the nonexponentiality observed in
which the effects of rotational and translational coupling carthese liquids is at least partly due to spatially heterogeneous
be controlled separately. The random dipolar lattice provideslistribution of correlation times. Thus, while the system is
such a model system. still ergodic over a long-time scale, probes scattered over the
One should also mention here the recent computer simuwvhole system seem to probe different microenvironments of
lation studies of orientational relaxation in Brownian dipolarthe system. Near the glass transition, these different mi-
lattices[6,7]. These studies clearly show the emergence otrostates may have widely different relaxation dynamics,
the non-Debye behavior as the polarity of the system is inwhich in turn can lead to a marked nonexponentiality.
creased. Unfortunately, the scope of this study was some- The above experimental resuf&2—24 also indicate that
what limited because the maximum static dielectric constanthe relaxation of these microdomains themselves may be
of this lattice is only around 18 due to an impending ferro-slaved to the rate of density relaxatiothe latter being de-
electric phase transition. So, if one wants to study the dytermined largely by the translational diffusion of the mol-
namics of dense dipolar liquid then one should opt for aecules[22,23. Thus there may exist a different dynamic
simple system with high dielectric constafd) where the coupling between the translational and the rotational dynam-
above-mentioned effects are really significant. The simpldcs in the supercooled liquid and this again has two aspects.
models that one can think of are the dipolar soft-sphere an#irst, when the spatial density relaxation becomes slow, the
the Stockmayer liquifi8—12). Therefore, we have performed orientational dynamics also becomes slow, not only because
detailed molecular-dynamics simulations of the soft-spher¢he viscosity is large but also because the translational mo-
dipolar liquid[8—11] and the Stockmayer liquifl1,12 and tions may no longer be able to assist in the decay of the local
the corresponding random lattices. The statics and dynamiawientational correlations. Second, these translational mo-
of these liquids have already been studied in considerabléons themselves can be even slower in these microdomains
detail, which has helped us in checking our results. As al{which are often of higher densjtyeading to even slower
ready mentioned, the random lattices have been formed bgrientational relaxation. The latter effect becomes significant
guenching the translation motion and allowing only the rota-near the glass transition. Clearly, these two effects are syn-
tional motion to exist. ergetic, which may explain the observed lafgeo orders of
There is an additional motivation to carrying out the magnitude increase of relaxation times in the slow domains.
present study. This motivation comes from the conjecture The above results again raise the same questions we asked
that the spatial density relaxation may be important in conbefore, namely, how strong is the coupling of the transla-
trolling the degree of nonexponentiality in supercooled lig-tional motion in orientational relaxation? Another question
uids near the glass transition. It is known that molecularthat arises is the maximum realizable extent of nonexponen-
relaxation processes in general, and orientational dynamidsality when the translational modes are totally absent. The
in particular, exhibit marked nonexponentiality in super-latter may provide a quantitative measure of the nonexpo-
cooled liquids near the glass transition temperature. Thisentiality predicted by the homogeneous mechanism. It is
nonexponentiality is so general that one often refers to it aalso relevant in quantifying the heterogeneous picture of
“universal” to all supercooled liquid$13—-16. This nonex- nonexponential relaxation. An earlier, theoretical calculation
ponentiality is sometimes explained by assuming that th¢2,3] predicted that the dielectric relaxation can be strongly
liquid is heterogeneous in the time scale of the relaxatiomon-Debye in the absence of the translational modes. How-
being probed; it is nearly exponential in a given environ-ever, this prediction was contested in an experimental study
ment, but the rates vary significantly among the environ{5] of dielectric relaxation on dipolar liquids that raised
ments. In an alternate picture, the liquid is imagined to bedoubts and also questions on the influence of the transla-
homogeneous while each molecule relaxes in an intrinsicallyional modes. Note that the answers to the questions raised
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above are also important in understanding the effects of dyapon the dynamic behavior studied. These boundary condi-
namic disorder on the net translational diffusion coefficienttions are an effort to mimic the true behavior of the infinite
of a supercooled liquid25] and also the effects of such system. Two different approaches are now widely used: The
environmental fluctuations on chemical reacti¢®§]. reaction field method31-33 and the Ewald summation

The third motivation of the present work comes from re-method[31,33—38. The reaction field method truncates the
cent studied27,28 on ultrafast solvation dynamics. These dipole-dipole interaction at a distance.Y from each particle
studies have raised several interesting questions regardiragnd approximates the medium beyond this separation by di-
the connection between the orientational relaxation and thelectric continuum with a dielectric constafés;z). A main
solvation dynamics. An important ingredient of most mo-drawback of this method is that it requires an initial guess of
lecular theories of solvation dynamics is the wave-vectorthe dielectric constant of the medium. In addition, the energy
and frequency-dependent collective orientational menfmry in these simulations is not conserved in a microcanonical or
dissipative function[2]. Theoretical studies suggest that this constant-NVE molecular-dynamics simulatidi31]. The
memory function may depend strongly on the translationaEwald summation metho@8,31] considers a macroscopic
modes of the liquid, particularly at the intermediate wavespherical sample composed of a large number of periodic
vectors. Such predictions can be easily tested via computeeplicas of the basic simulation cell, which is again sur-
simulations. rounded by a dielectric continuum characterizedly. This

The organization of the rest of the paper is as follows. Inapproach is commonly referred to as periodic boundary con-
the next section we explain the computational details. Sedditions (PBCsg [8]. In the present study we consider only the
tion Il contains the results of our molecular-dynamics simu-PBC where the dipole-dipole interactions have been esti-
lations of dipolar liquids, while Sec. IV contains the same formated using the Ewald summation technique.
the random dipolar lattice. Section V contains the results of The potential formUpp using Ewald summation can be
the wave-vector- and frequency-dependent orientational cogiven as follows. The potential at a single site is given by the
relation functions. Section VI concludes with a brief discus-expression
sion of the results.

PBC.err

Il. COMPUTATIONAL DETAILS Upp  (12)= = (pme- V) (p2- V) i(r)
We model the dipolar liquid by two different potential 41
forms: the dipolar soft-spheri8] and the Stockmaye12] T Zent DL M1 P2 (6)

potentials. The dipolar soft-sphere potential is given by
where y(r) is given by[8]

Uu(12)5S=uggtupp(12), (1)
where 1 > erfo(a|r/L+n|)
v=¢ 0 [r/L+n|
Uss=4esd olr)? i) 1 1 2202 o
+— —exp———+—n-r|, (7
is the soft-sphere part ang,(12) is the dipolar part. L ,;o n? xp( o? L @)

wherea is the convergence parameteris the cubic simu-
Upp(12)=—3(py- 1) (- 1)Ir5+ py- o /73, (3) lation box length.n=(I,m,n) is the lattice sum, and erfc is
the complementary error function.
In the above equatiory, is the dipole moment of the par-  There are three different parameters that must be specified
ticlei andr=r,—r;. The Stockmayer liquid has the potential jn the calculation of the Ewald summation techniques and
form each will influence the accuracy of the resul8. These
parameters are the truncation of the real-space and the Fou-
st rier space contributions and the value of the convergence
Uu(12)”=uy+upp(12), (4 parametefa). Thea is usually chosen to be large enough so
that the only term that contributes to the sum in real space is
that withn=(0,0,0 and so the first term in the equation for
uEBDC’ERF(lZ) reduces to the normal minimum image conven-
U y=4esd (alr)?—(alr)°]. (5) tion. Next we consider the sum over reciprocal vectors
The values ok are restricted t&k=2=n/L [31]. In a simu-
Here ess and o are the parameters characterizing the energyation, the aim is to choose a value efand a sufficient
and the diameter of the dipolar soft-sphere, Lennard-Jonesumber ofk vectors so that the above equation with the real
(LJ) and the Stockmayer potentials. space truncated at=0 gives the same energy for typical
The long-range nature of the dipole-dipole potential givenliquid configurations. The values for all the above-mentioned
by Eq. (3) requires that care must be taken in specifying theparameters have been taken from the paper of Kug8lik
boundary conditions in these systems. It has also been foundho has done an exhaustive study of the soft-sphere dipolar
[8,12,29 that the boundary condition employed in a com-systems. The values of all the parameters used in simulations
puter simulations of a polar liquid can have a large impactare tabulated in Table I.

with
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TABLE |. Parameters employed in evaluating the Ewald sum- 25
mation for the dipolar soft-sphere liquid simulations. The values
have been obtained from R¢8].

N R MBrax @ 20 ¢

256 2.56r 38 5.75

The nondipolar part is handled using the potential trunca- =
tion and the minimum image convention. For the soft-sphere
dipolar and Stockmayer liquids the nondipolar part of the
potential(i.e., the soft-sphere and the Lennard-Jones poten-
tials) was truncated at 2.56

All the molecular-dynamics simulations reported in this
paper have been performed using 256 particles using con-
ducting boundary condition@&rr=) [8,31,37. The reasons
for choosing the conducting boundary conditions in our %5 05 10 15 20 5 3.0
simulations is because the dipolar liquids we consider are
highly dense isotropic liquids and their dielectric constants
have been found to be larged]. Therefore, we would expect . S .
the usual Ewald-Kornfeld boundary conditions that corre- FIG. 1. Comparison of the radial distribution for the dipolar
spond toeg= to give a good approximation to infinite- ls_oft_-jphelr_z ll_qu|dmir5e£s()wfrlg 8S°|'d O:;_rlbf;%;hil Stoctlfma_yer
system behavior. The number dependence for the soft-sphe([;%:;'res(zz(;I ir:rli)ditcléd_un.its,p ~0.8, andl”=1.35. Note that Is
dipolar liquid have already been studied by Kus&8k who '
found that 256 dipolar soft spheres are sufficient to mimic
the most of the macroscopic properties. This applies also for !l COMPUTATIONAL RESULTS ON LIQUID
Stockmayer liquid model reported in this paper. The equa- A. Static properties
tions of motion are solved using leapfrog scheme suggested

by Fincham[31,38,39. It is convenient to characterize the

dipolar soft-sphere and Stockmayer systems by the reducéflﬂ*e soft-sphere dipolar liquid and the Stockmayer liquid, at
densityp* =po°, the reduced temperatuie =kgT/ess, and ~ “ =2.0. As expected for the liquid phase, t)&) tends to

. . 1 asr—oo, These calculations are reported to show that our
the reduced dipole moment* = \(u?/esr™), wherep is : . .
the number densityT is the absolute tesmperature, akds simulation results agree plosely with those of Kusglik As
the Boltzmann constant. Simulations have been performe ne can see, the(r) ford|polar soft-sphere .and Stockmayer
for fixed values of p* and T*, given by p*=0.8 and uids differ at least in two ways. Not only is thrggr) more

T*=1.35. Three values of dipole moments were considere tructured for the dipolar soft-sphere liquid but the whole
,u*=2.0 '1 5 and 05. The reduced moment of inertia unction is also shifted by a constant factor to large separa-

(I* =1/mo?) was taken to be 0.025 and the reduced times
stepAt* = At/\Jmo?/ ess=0.0025. Equilibrations have been
done over X10° time steps and the averages have been Stockmayer (STM)
mostly computed over 2:610° time steps. Error bars repre- 101 _00

senting the statistical uncertainty in the dielectric constant Ho=c
were determined using block average as suggested by Allen
and Tildesley[31] with each block of length 2810° time
steps each.

For each of the systems studied and at each polarity, we
generated a quenched state, in which the translational motion 0.0
of each molecule is removed and only the rotational motions = Dipolar soft-sphere (SSL)
are allowed. These quenched states have been prepared using vIor
the following procedure. Initial configurations for these —20
simulations have been taken from well-equilibrated liquid 05 |
simulation runs. These configurations are then quenched and
equilibrated, for 1.X10° time steps, and production runs
were continued for another 2&.0° time steps. Such a state 0.0 , ‘
will be positionally and orientationally disordered and hence 0.0 0.5 1.0 15 2.0
we call it a random lattice. Three different random lattices 1
have been formed for each system and for each polarity stud-
ied. The results obtained from each of the three different FiG. 2. Mean-square displacement as a function of the reduced
random lattices were nearly the same. The results given iime for the soft-sphere dipolar liqui(SSL) and the Stockmayer
this article correspond to one such random lattice. liquid (STM) for u*=2.0, p*=0.8, andT*=1.35.

05+

In Fig. 1, we plot the radial distribution function for both

05 r

r(t) - r(0)]>
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tions. This can be understood because the dipolar soft-sphere TABLE Il. Results for dipolar soft sphere fluids at=0.8 and
liquid without the attractive part of the Lennard-Jones have d*=1.35. Note that theJpp/Ness is the reduced dipole-dipole
large “effective radius” that makes thg(r) shift by a con- energy per particle antl/Ness is the reduced total energy per
stant factor. particle. The values foe given in parentheses are estimates of the

In order to confirm the liquid phase, we calculated theuncertainties.
mean-square displacemeit;(t) —r;(0)|), wherer,(t) is the

position vector of moleculé at timet. For fluids the mean- o Upp/Ness (U)/Negg €
square displacemeriMSD) continually increases with time 1 5 —2783 2397 19.353.0)
varying linearly at long times according to the Einstein rela-, ~6.061 —0.69 88.0+2.0)

tionship[31]

(Iri()—ri(0)[%)=6Dt, ® Molecular-dynamics results for the average dipole-dipole

energy(Upp)/Negs, total configurational energy)/Negs,
whereD is the translational diffusion coefficient. Figure 2 total moment square¢M?), and the static dielectric constant
shows the respective MSD for the soft-sphere dipolar liquidor the two systems, the soft-sphere dipolar liquid and the
and the Stockmayer liquid at*=2. As expected, the MSD Stockmayer liquid, have been presented in Table Il. In fact,
plots for the two modelgsoft-sphere dipolar and Stock- such a comparative study had been presented earlier by Ku-
maye) in their liquid phase shows a linear dependence withsalik [11]. His results were similar to the ones reported here
time. The Stockmayer liquid shows slightly faster diffusion. except for a dipole moment gi*=1.65. The value of the
This can be interpreted in terms of Fig. 1. Since the softdielectric constants of the random lattices were found to be
sphere liquid is more structured at molecular length scales, gslightly smaller than that of the corresponding liquids. For
tagged particle experiences more frictional force in this lig-example, the dielectric consta# of the dipolar soft-sphere
uid. The latter follows from the recent mode-coupling ex-liquid for u* =2.0 was 88& 2 for the liquid and 88 3 for the
pression of the friction in terms of the density modié8)]. corresponding random lattice.

The static dielectric constatis a fundamental property The possible existence of orientationally ordered phases
of polar liquids[41] and thus remains a major focus of re- was monitored for both liquids and random latti¢és both
search interest. Unfortunately, the determination of thissoft-sphere dipolar and Stockmayéy calculating the equi-
quantity by computer simulation is known to give both con-librium first- and second-rank orientational order parameters
ceptual[12,29,3Q and computational difficultie§8]. In or-  (P,) and(P,), respectively. The instantaneous second-rank
der to obtain reliable estimates of thethe simulations order parameteP, was taken to be the largest eigenvalue of
should be long enough to yielM)?/(M?)~0. In practice, the ordering matrixQ with elements by9,10]
for a strongly interacting polar liquids, such as the ones con-
sidered in this work, the ratio may not be exactly zero. But,
in our simulations we get a ratioM )2/(M?2)~0.1 [9]. Di- 1 XN o
electric constantse) reported in this work were obtained Qaﬁ’zﬁ > 3 (it = Oap), (12
from the mean-square fluctuatiods!?) of the total dipole =1
moment of the syste81]. In general the relative permittiv-
ity e of the system is not the same as that of the surroundmg/hereN is the number of particles in the simulation box and
mediumege. The expression for calculatingfrom the simu- 4, is the a component of the unit vectog; . The_corre-

lation can be written ag31] sponding eigenvector is the instantaneous diredtoirhe
instantaneous first-rank order paramekr is defined by
1
1 1 1 [9,10]
—= - . ©
€—1 3yd(erp) (2€ret1l) .
1
whereg(egp) is related to the fluctuations in the total dipole Pi=x 2 (13
moment of the simulation box B
N N 2 The equilibrium order parameters are the ensemble aver-
z 2\ _ 2 ages ofP; and P,. The equilibrium order parameters for
=1 ® =1 ® both the models in both the phas@suid and random lat-

g=9(erp) = 2 . (10 tice) have been computed and found to be close to zero,
suggesting the inexistence of macroscopic order in the liquid

and the random dipolar lattidgkDL).

Nu

The calculated value ofy factor depends uporege
through the simulation Hamiltonian. Whegg=~, the above
equation reduces to the Clausius-Mosotti refai] B. Dynamic properties of dipolar liquids

The normalized autocorrelation functio@ f(t)] of a mi-
e=1+3yg(). (1)  croscopic quantityA;(t) associated with théth molecule is
computed in the molecular-dynamics simulations using the
wherey=47pu?/9kgT. expression
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o1 (T o1 (T
Ca(t)=lim T fo ds A(S)A(Hs)/ lim T fo ds A(S)A(s). (14

T—oo T—oo

In this expression the dynamic quantity can be force, torquesourse, a tentative explanation: a detailed theoretical study is
position, or angular velocity of the particles present in therequired to fully understand the differences between the two
system. Correspondingly, we get the respective time autocotiquids.
relation functiong31]. In Fig. 3 the torque autocorrelation In Fig. 6 we compare the decay of the single-particle ori-
function [C+(t)] and its power spectrum have been shownentational correlation function with that of the total moment
for dipolar-soft spheres au*=2. The Fourier transforms correlation function for the highest* considered in this
consist of a well-developed, although not a very broad, peaktudy. The decay o€,(t) is faster than that of th€,,(t).
with a short high-frequency tail. The usual interpretation for this behavior is the following.
Of particular importance for the interpretation of light- Since the total-moment time correlation function is a collec-
scattering experiments and dielectric relaxation experimentsve quantity, it is affected by the long-wavelength orienta-
are the orientational time correlatiofd2]. In Fig. 4 we tional correlations present in a strongly correlated system.
present the semilogarithmic plot of normalized time correla-These correlations are responsible for the decay being much
tion functions for the collective momenCj,(t)] for both  slower for the collective moment than for the single-particle
the dipolar soft-sphere and the Stockmayer liquid models atase. Note that a similar observation has already been made
u*=15. earlier by otherg8,11], although a detailed comparison of
the simulation results with the detailed microscopic theories
Cu(t)=(M(t)-M(0))/(M?), (15 s yet to be done.
The relaxation of the single-particle orientational correla-
whereM (t) =3 Mp;(t). Figure 5 shows the time dependencetion function C,(t) is really interesting. After a short-time
of the single-dipole autocorrelation functi@y(t) for both  jnertial decay, the decay is nearly exponential at the interme-

systemg(soft-sphere liquid and Stockmayer diate times. The relaxation again becomes nonexponential. A
5 distinct bend appears &t0.3. Again, this kind of shoulder
C1(t)=(p(t) - (0))/ . (16 has already been reported in the earlier simulations of dipolar

b ¢ . 4 5 that the rel .. fluids [8]. Again, a detailed theoretical explanation of such
It can be seen from Figs. 4 and 5 that the relaxation img,opayior is missing. Unlike the single-particle correlation

fﬁr t?e dr|1polar sEft—sphe;le 'syite_lrr_ﬁ IS S“ghtly.Shok:terbthar}unction, the total-moment time correlation function rapidly
that for the Stockmayer uidil ].' Is IS opposite the be-  ,o0omeg exponential after an initial nonexponential Gauss-
havior observed for the translational diffusion. This may be-an decay[8]. We have shown in a separate study on orien-
dl;]cf’ ;0 thlf attrzactlve. [?art of the L(Tnnar(_j—J(r)]nes polzent'a'rational relaxation in a simple cubic dipolar lattice that the
}’.V IFd ma egdt € ]E)aruchs to\;:vc;]me choser In It e Stocl mayeﬁwemory function for the single-particle correlation function
Iqui _(as evi ent from Fg. 1L When the partlg €S are Closer s mych larger than that for the collective moment correlation
the dlpO|E_-de0|e interactions are larger, which gives rise 10 netion. This can explain the nearly exponential decay of
greater friction and this makes the decay slower. This is, o he collective moment. The slower decay of the collective
moment is due to the long-wavelength static correlations that

1.0
> 3
*E; 0.0
S 2
19]
£
05}
05 |
= —
= frary o\
O = o
0.0 o 1.0}
£ R
— S8SL N
1.5t U STM s\\
05} N=256 u=156 \\
- p =08 T-135 "
0 0.2 0.4 0.6
. 2.0 : : : :
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FIG. 3. Decay of the normalized torque autocorrelation function
with reduced time for the dipolar soft-sphere liquid. The inset FIG. 4. Comparison of the total-dipole-moment time correlation
shows the power spectra of the corresponding time correlation fundor SSL (solid line) and STM(dashed ling at p*=0.8, T* =1.35,
tion. and u*=1.5.
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FIG. 5. Normalized single-dipole orientational time correlation

function for SSL and STM gp*=0.8, T* =1.35, andu*=1.5.

function.

FIG. 7. Comparison of the single-dipal&=1) and total-dipole

. . . (X=M) orientational time correlation functions for the dipolar soft-
affect the total moment but not the single-particle correlatlonsphere liquid ap* =0.8, T* =1.35, andu* =0.5.

~ For quantitative purposes, it is useful to define the follow-hq frequency dependent dielectric consteat)] it was nec-
ing average collective correlation times associated Wltf’éssary to extrapolate the simulag(t) to obtain the long-
Cy(t) andCy(1):

T= fmcl(t)dt

0

and

7= f:cM(t)dt.

time behavior. This was done by assuming thattfe0.3,
Cu (1) is given by the simple exponential form
Cu(t)=Ae Ysiope (19
where 74,0 is the asymptotic slope obtained from the semi-
logarithmic plots of Fig. 4, where I, (t)] is plotted
against time. The same procedure was also used by Kusalik
[8]. The study of Stockmayer liquids has a long history and
the trends for the Stockmayer liquid show similar nature and

The values ofC,(t) were calculated for sufficiently long are not shown here.
times with more than adequate precision to allow the The increasing importance of collective effects s is

straightforward numerical integration of E(L.7). However,

increased at a given density and temperature is demonstrated

in the evaluation of Eq(18) [as well as in the evaluation of in Figs. 7—9 by comparing the autocorrelation of the total

0.0 /=
. — X=1
N - X =M
1.0 R
;?-20
IS
30¢F
w=20 p=08
T=135
-4.0 : : :
0.0 05 1.0 1.5 2.0
:

FIG. 6. Comparison of the total-dipole time correlation function

1.0 3

08| K

0.6} N

Cx(®)

0.4} \

021 *

X1} S NG, LR PP

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 8. Comparison of the single-dipal®¥=1) and total-dipole

with the single-dipole time-correlation function for the dipolar soft- (X=M) orientational time correlation functions for the dipolar soft-
sphere liquid ap*=0.8, T* =1.35, andu*=2.0.

sphere liquid ap*=0.8, T*=1.35, andu*=1.5.
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FIG. 10. Comparison of the torque-torque autocorrelation func-
FIG. 9. Comparison of the single-dipol¥=1) and total-dipole  tions C(t) for the dipolar soft-sphere liquigsolid line) and the
(X=M) orientational time correlation functions for the dipolar soft- corresponding random latticelotted ling at p*=0.8, T*=1.35,
sphere liquid ap* =0.8, T* =1.35, andu* =2.0. and u*=2.0.

. — B .
moment Cy,(t), with the single-particle dipole reorienta- ZT)(/) ;0 a stretched exponenti&@,,(t) =exp—(t/7)*, with

tional correlation functionC,(t). At u*=0.5, the dipolar In Fia. 11 th laxati f the sindl ficl lati
interaction energy is weak compared to the rotational kineticf n Fg. € relaxation ot the single-particie correlation
unction C,(t) for both the liquid and the random lattice

energy. The similarity of the single dipole and the total- ystems is shown for a system of dipolar soft spheres at the
moment correlation function indicates only weak cooperative’” : ) .
y P igh polarity (u*=2.0). Note that the nearly identical decay

effects. At higher values o&*, the two correlation functions ! ) . :
J ok t the short timeput the widely different time scales of re-

have, as before, the same quadratic short-time decay, corr i tthe | timesFor the liquid the | i fth
sponding to the free rotors, but at larger times collective2X@tion at the fong imes-or the fiquid the long ime ot the

effects dominate the decay of the total polarization and lea§ingle-particle Co”?'at'on funct|0.n IS fOUFl(:kt)tl;O he}ve a
to a nearly exponential decd,11]. A similar study for stretched exponential nature witlC,(t)=e """, with

Stockmayer liquid already exists and the same kind of trend=0.9. In the corresponding RDL, the slow decay is subdif-
has been reportefd3]. fusive, with C,(t)=(t) %, with a=0.75. In the inset of Fig.

11 we show the decay of the same correlation function at the

IV. ORIENTATIONAL DYNAMICS
OF RANDOM DIPOLAR LATTICES 0.0 5

Having studied the liquid-state properties in detail, we
now concentrate on the dynamic properties of the random
dipolar lattice. The random dipolar lattice was, as mentioned
before, formed from a fully equilibrated dipolar liquid by 3
totally quenching the translational motion of every dipolar =
molecule. The study of the orientational order parameters Q) -1of t
and the radial distribution function indicates that the random = '
dipolar lattice so formed were orientationally random and
positionally disordered. Below we discuss the results ob- 15t .
tained for various time correlation functions calculated for H=20
the random lattice. A few of the results mentioned here were .
reported previously44]. o0 . . o

In Fig. 10 the torque-torque correlation functio@(t)] 0.0 0.2 04 0.6 08
of the liquid and random lattice for the dipolar soft-sphere t
liquid are plotted. The plot shows that the decay nature of the
correlation functions is almost similar. The same kind of 5 11 Single-particle orientational correlation functiog(t)
observation has been observed for the angular velocity alsqotted against reduced time on a semilogarithmic plot for liquid
and it is not shown here. and the random lattice, fou*=2.0, p*=0.8, andT*=1.35. The

As mentioned in Sec. Ill, the long-time part of the collec- dashed lines represent the liquid state and the solid lines are for the
tive moment correlation function for a soft-sphere dipolarrandom lattice. The inset shows a graph of the same function
liquid could be fitted to an exponentipdee Eq(19)]. How-  against time for the smaller dipole-momep* =0.5) system stud-
ever, the same for the corresponding RDL could be fitteded, as discussed in the text.

In[C, ()]

0.5




54 ORIENTATIONAL RELAXATION IN A RANDOM. .. 3701

80 Random Lattice LIQUID —*

LJ.. 00 T 135 p' -o0 osl Random

Lattice

[£ (0)- ‘1_'| Je

FIG. 14. Cole-Cole plot for the liquid and the corresponding
random lattice au* =2.0. Here the imaginary pdr¢’(w)] has been
plotted against the real part'(w)]. € is the static dielectric con-
stant.

FIG. 12. Real component of the frequency-dependent dielectric
constant for the dipolar soft-sphere liquid and the correspondingoft-sphere dipolar liquid and the corresponding random lat-
random lattice ap*=0.8, T*=1.35, andu* =2.0. tice, respectively, au*=2.0. In Fig. 14 we show the Cole-

Cole plot of the dielectric relaxation of the soft-sphere dipo-

lower polarityu* =0.5. Here the decay is nearly identical for lar liquid and the corresponding random lattice for the highly
the both the liquid and the random lattice over the wholepolar system. Note the markedly non-Debye behavior of the
dynamic range for this weakly polar system. Note Baft) random lattice, in contrast to the nearly Debye behavior of
and Cy,(t) behave rather differently in the random lattice. the liquid. Note also the increased role of inertia at high
The same trend is observed in the Stockmayer system alsdrequency for the random lattice. In Fig. 15 we show the

The frequency-dependent dielectric constantsecond-rank orientational correlation functi@y(t). Here
e(w)=¢€"(w)—i€'(w) was determined using the general ex-again the decay in the corresponding random lattice is mark-

pression 8] edly slower than that in the liquid. As already mentioned, no
signature of macroscopic orientational ordering has been ob-

r [—C (D]=1— 0Ll [Cy(t)]= €(w)—1 2erete served either in the liquid or in the random lattice systems.
lo M tol ~M e—1 2exretelw) Essentially the same results have been obtained for the

(200 Stockmayer liquid.

How should the dramatic slowing down of relaxation in
in which £; ,[ ] denotes the usual Fourier-Laplace transform.the random dipolar lattice be interpreted? It is well known
In Figs. 12 and 13 we show the real and imaginary compo-
nents of the frequency-dependent dielectric constant for the

4
0 RANDOM LATTICE
W=20 T=135 p=08 M
§ ol 0 0.1 ; 0t2 0.3
o)
£
% 2 4 5 8 3
. LIQUID | "
a0} Wo20  T=135 =20
—~ . 4t
3 L p =08
fo/ 20 0 0.2 04 0.6 0.8
;
0 . . .
0 2 4 6 8 . . . . .
o~ FIG. 15. Second-rank single-particle orientational correlation

function C,(t) plotted against the reduced time on a semilogarith-
mic plot. The dashed lines represent the liquid state and the solid

FIG. 13. Imaginary component of the frequency-dependent dilines are for the random lattice. The inset shows the dependence of
electric constant for the dipolar soft-sphere liquid and the correthe same function against reduced time for a smaller dipole moment
sponding random lattice @t =0.8, T* =1.35, andu* =2.0. (u*=0.5).
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FIG. 18. Normalized longitudinal part of the total moment-
moment time correlation function for dipolar soft-sphere liquid
(solid line) and the corresponding random latti@ashed ling at
p*=0.8,T*=1.35, u*=2.0, andK* =6.43.

FIG. 16. Normalized longitudinal part of the total moment-
moment time correlation function for the dipolar soft-sphere liquid
(solid line) and the corresponding random lattiGgashed ling at
p*=0.8, T*=1.35, u* =0.5, andK* =0.919.

common in atomic liquids where this slowing down of den-
that the translational modes are most effective in acceleratingity relaxation at molecular length scales is known as de
the decay of intermolecular correlations at the intermediaté&ennes’s narrowinf45]. We quantify these concepts below.
to large wave vectors, that is, at short tin{&s3,45. The For dipolar liquids, the single-particle frictiof{z) is usu-
nearly identical decay observed for the liquid and the randonally separated into a short-range part, denotedJyyand a
lattice at low polarity indicates that here the translationallong-range dipolar part(termed the dielectric friction
modes are not important and this is because the local oriedpe(z). The bare frictiony may include the friction from all
tational order is small at low polarity. The anomaly observedthe angle-dependent but nondipolar interactions. In the
at higher polarity must then be attributed to the much highepresent case;,=0; therefore, the whole effect comes from
degree of local orientational correlations present in the latter{pe only. The calculation of the dielectric friction evidently
When the translational modes are totally absent, then thesequires the calculation of the torque-torque correlation func-
local correlations cause the orientational relaxation to protion. From molecular hydrodynamic theory one can obtain a
ceed at a much slower rate. This is similar to the situatiormicroscopic expression for the torque acting on a particle at

0
0.0
al
0.5 |
F= N <
= | £ 2
__EJ' .O \\\ Ql
O o * £
— Liquid
a5 ---- Random Lattice 3l — Liguid
W=05 K = 6.43 ---- Random Lattice
p=05 K =0.919
20 . . 4 . .
0.0 0.05 0.10 0.15 0 0.05 0.1 0.15 0.2
1 t

FIG. 17. Normalized longitudinal part of the total moment- FIG. 19. Normalized transverse part of the total moment-
moment time correlation function for the dipolar soft-sphere liqguid moment time correlation function for the dipolar soft sphere liquid
(solid line) and the corresponding random lattic@ashed ling at (solid line) and the corresponding random latticdashed ling at
p*=0.8,T*=1.35,u*=0.5, andK* =6.43. p*=0.8, T*=1.35, u*=0.5, andK* =0.9109.
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FIG. 20. Normalized transverse part of the total moment- FIG. 21. Normalized transverse part of the total moment-
moment time correlation function for the dipolar soft-sphere liquid moment time correlation function for the dipolar soft-sphere liquid
(solid lineg) and the corresponding random latticgashed ling at (solid line) and the corresponding random lattit@ashed ling at

p*=0.8, T*=1.35, u* =0.5, andK* =6.43. p*=0.8,T*=1.35, u*=2.0, andK* =0.919.
position () and orientatior(()) at time ¢) [40] ute dipole and the solvent molecules &g (k,z) is the gen-
eralized rate of density relaxation and is given[BY]
N(r’ﬂ’t):_ps(r’ﬂ't)VRJ drid@’ce(r,r', 2.2 S e (14 DkgTH(IM:K) | KkeT F(1Im:k)
| 1Z = ’
X 8po(r', ' 1), (21) " ITR(K,2) MT1(k,2) 3

where p(r,Q,t) is the position-, orientation-, and time-
dependent number density of the tagged particle Bads yvher_eM and| are the mass and the average moment of
the angular momenta operatdj(r,Q.t)=po(r Q) —py/ar  inertia of a solvent moleculel’r(k,z) and T'r(k,2) are the

is the fluctuation in the position- and orientation-dependentfemory function for the single particle and the collective

number densitys(r,€2,t) of the solvent molecules angyis ~ angular momentum relaxation, respectivefflim k) is re-

function of the tagged particle and a solvent moleddi@l.
From this torque we can calculate the friction by using the

well-known Kirkwood formulg46]. But this leads to a com- 0=c
plex four-dimensional integration over the torque-torque au- o
tocorrelation function. Traditionally, it has been assumed 05F  \\ — Liquid
that the tagged particle is immobile. This leads, after some '\, - Random Lattice
tedious algebra, to the expression for the dielectric friction A
_ Po « g: ~~~~~~~~~~~~~~~
Blpr(2)= 20207 fo dk K £15)
&)
c2(110))[ L+ (pol4m)h(110K)] = Ll
x 2+ 314K, 2) ,
o5l M =20
) c2(111K)[1— (po/4m)h(111K)] 25 < 643
Z+211(k,2) ’ s ‘ ' ‘ ‘ ‘
(22) 00 0.2 04 06 08 1.0

wherec(llm:k) andh(lim:k) are the {Im) components of

the two particle direct correlation function and the pair cor-  F|G. 22. Normalized transverse part of the total moment-
relation function of the liquid in the intermolecular frame moment time correlation function for the dipolar soft-sphere liquid
with k parallel to thez axis [2]. c(110k) is the (Im) (solid line) and the corresponding random lattiGdashed ling at
component of the direct correlation function between the solp*=0.8, T*=1.35, u*=2.0, andK* =6.43.
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In deriving the above expression, one assumes that theansversgT, perpendicular t&k) components. The(«) is
intermolecular correlations are given by a linear the@ych  the dielectric constant at the optical frequenefge)=1 for a
as mean spherical approximation or linearized hypernettedystem of rigid nonpolarizable molecules
chain [48,49, so that the only nonvanishing components of The susceptibilityy(k,w) can easily be expressed in terms
the direct correlation function arg(000k), c(110k), and  of molecular correlation functions. The main interest in this
c(111k). A microscopic expression for the dielectric fric- work is to calculate these molecular correlation functions
tion was derived earligf50] using a Markovian approxima- and check the predictions of the molecular theories. For rigid
tion for the dissipative kernels of the solvent. Here the genand nonpolarizable molecules with dipole moments of mag-
eralization of this treatment to non-Markovian regime of nitude u, linear response theory gives the expression for
solvent relaxation has been used. x(k,w) [51-54,

Equation(23) has an interesting structure. It shows that
the dielectric friction is sensitive to the local orientational
correlations. Moreover, both the longitudinal and the trans-
verse modes contribute to the dielectric friction. Note that by
the transverse mode, we mean here (thEl) component in
the coordinate frame whéais along thez axis: these araot
the transverse electromagnetic modes. As already mentioned
for a RDL, the friction entirely comes from the dielectric part where p is the number density and is the number of di-
as(, is identically zero. The structure of E(23) helps us in  poles in the system. The quanti®(k,t) is the spatial Fou-
understanding the strong effect of local intermolecular orientier transform of the dipole density
tational correlations in the absence of translations. When
translation is absend,(k,z) is small_at intermediate wave M(k,t)zz wi(exdik-ri(h)],
vectors, wherd ;,4k) shows a softening. Thus the contribu- j
tion of the intermediate wave vectors becomes very large for
the random lattice. This, in turn, leads to the subdiffusivewhere; is the dipole moment of thgth molecule and; is
slow decay. The quantitative calculations are yet to be carthe position of its center of mass with respect to the labora-
ried out. tory frame. Due to the periodic boundary conditions used in

What is the reason for the increased dispersion at th@ur simulations, the allowed wave vectors are of the form
high-frequency limit observed in the random lattice? This isk=(l,m,n)2=/L, whereL is the length of the cubic simula-
because of the same translational modes that reduce the lo$ion box andl,m,n are integers.
frequency friction lead to an increased value of the friction at  On decomposingv (k,t) into longitudinal and transverse
the high-frequency end. Thus the magnitude of friction deComponents, one gets
creases at the short times when the translational modes are
removed, as in the random lattice case. This part deserves M(k, ) =M(k,D) +M+(k,t)

x(k,w)= kBTpNEO (<|M(k)|2>+iwf0 dt exp(i wt)

><<M(k,t)~'\/|(—k.0)>), (27)

further study. =M(K,t)-Kk+M(K,t)- (1—kk).
V. WAVE-VECTOR- AND FREQUENCY-DEPENDENT The orientational correlation functions one is interested are
DIELECTRIC RESPONSE OF THE RANDOM DIPOLAR
LATTICE Cur(k,t)=(M_(k,t)-M_(—k,0)) (28

An important ingredient of several molecular theories ofand
solvation dynamics is the wave-vector- and frequency-

dependent collective orientational correlation functions. In Cur(k,t)=(M+(k,t)-M1(—k,0)). (29
fact, a few studies of the frequency-dependent dielectric re- ) ] o i
sponse have already been reporfe1-53. An interesting prediction of the molecular theory is that at

The wave-vector-dependent permittivity of a particularintermediate wave vectork=2m/o, with o the molecular
system may be related to susceptibilipfk,w) that deter- diametey, the orientation relaxation depends strongly on the

mines the polarization due to the external figltk,w). translational diffusion of the solvent molecules. In fact, the
theory makes even a stronger prediction that in the absence
P(k,w)=¢epx(k,w)E(K,w). (29 of the translational modes the orientation modes will be sig-

nificantly slower and more nonexponential than in the pres-
wheree, is the vacuum permittivity. For an infinite system of ence of these modes. This is due to the strong local orienta-
cubic or spherical symmetry it is readily shown thal-54  tional correlations present in a strongly polar dipolar liquid
e (K,w) — () that tend to “cage” th_e orientational_ motion. In fact, the
YLK, @)= v = (25)  simulations presented in Sec. IV are in complete agreement
e (k,w)e(e) with these predictions. What now remains to be demon-
strated is the strong dependence of orientational relaxation at
intermediatek vectors on translation. This is done below.
xt1(K, 0)/2= e7(k, ) — €(), (26) In Figs. 16 and 17 the time dependence of the normalized
CuL(k,t) is shown for a dipolar soft-sphere liquid and the
where y and the dielectric permittivity tensas(k,w) have  corresponding random lattice at =0.5 at the wave vectors
been decomposed into longitudindl, parallel tok) and ko=0.919 and 6.43, respectively. These figures clearly show

and
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that the translational modes, while not important at low wavesystems. The importance of translational and rotational cou-
vectors, dominate the long-time orientational relaxation apling can be understood by the following argument. In the
the intermediate wave vectors. This behavior is in completenicrodomains where the translational diffusion is slow, the
agreement with molecular hydrodynamic theory. In Fig. 18orientational relaxation of a dipolar molecule can be even
the time dependence of the normalizeg, (k,t) atko=6.43  slower. In the experiments where a subensemble of particles
is shown foru*=2.0. At this high polarity the orientational is selectively studied, it is the slow relaxation that is domi-
correlations between neighboring molecules are significanhant. The dramatic slowing down of the orientational relax-
The molecular hydrodynamic theory therefore predicts thagation in the random lattice can be understood in two ways.
the translational modes can be extremely important in thigirst, the slow orientational relaxation of the random lattice
regime. Figure 18 clearly verifies this prediction. In Figs. 19can be easily explainable because of the many relaxation
and 20 we show the time dependence of the transverse corahannels that are available for the liquid and not for the
ponentCy,1(k,t) for two wave vectorko=0.919 and 6.43 random lattice. Second, the heterogenous mechanism ex-
for u*=0.5. One again sees the importance of translationgblained in the Introduction can be used to understand the
modes in the intermediate wave vectors. The dependence dfamatic slowing down of the orientational relaxation. Since
Cut(k,t) on the translational modes at intermediate wavethere is no macroscopic order observed in the systems stud-
vectors increases at*=2.0. This behavior is similar to the ied it may be concluded that the orientational slowing down
one shown in the previous figures and is shown in Figs. 2Tan be partly due to the local ordering developed in the sys-
and 22. tem. The results of the orientational correlation functions of
The same kind of behavior has been observed for Stockhe random lattice seem to show a subdiffusive behavior at
mayer liquids. This amply verifies that the important role oflong times. The strong dependence of orientational relax-
translational modes at the intermediate wave vectors is indeation at intermediate wave vectors on translational diffusion

pendent of the detailed short-range interaction. is also confirmed by the simulation studies. Moreover, the
results obtained here appear to be in good agreement with
VI. CONCLUSION the computer simulation results of Skaf, Fonseca, and Lada-

. o nyi [54] for orientational relaxation in methanol. One par-
Several different results have been reported in this workgicylarly nice result obtained by them was the greater sensi-
They clearly demonstrate the coupling between rotation angyity of the relaxation of the transverse part of the collective

relaxation in the supercooled liquid. However, these resultgazme result has been obtained here.

are for model systems and one should be cautious about their
relative importance in real systems. The decay nature of the
orientational relaxation of the single particle and the collec-
tive moment in these systems show a rather different behav- Helpful discussions with Professor Michael Moreau and
ior. The collective moment relaxation of the system become®r. Aurelien Perera are gratefully acknowledged. This work
much slower as one goes to the higher polar systems. Thisas supported by the Indo-French Center CEFIPRA under
clearly confirms the importance of collective effects in suchProject No. IFC/1106-1.
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